
2.1 CHAPTER OVERVIEW

Maximum likelihood is the go-to estimator for many common statistical models, and 
it is one of the three major pillars of this book. As its name implies, the estimator 
identifies the population parameters that are most likely responsible for a particular 
sample of data. I spend most of the chapter unpacking this statement for analyses with 
normally distributed outcomes. Not only are such models exceedingly common across 
many different substantive disciplines, but the normal curve also appears prominently 
throughout the book as a distribution for missing values. As such, this chapter sets up 
a lot of later material. For now, I focus on complete- data maximum likelihood analyses, 
but all the major ideas readily generalize to missing data, and much of Chapter 3 tweaks 
concepts from this chapter.

The chapter begins with a simple univariate example that illustrates the mechanics 
of estimation and builds to multiple regression. As you will see, maximum likelihood 
estimates are equivalent to those of ordinary least squares, as both approaches iden-
tify estimates that minimize squared distances to the data points, albeit in different 
ways. After describing significance tests and corrective procedures for non- normal data, 
I illustrate estimation for a mean vector and variance– covariance matrix. This multi-
variate analysis lays the groundwork for missing data handling in models with general 
missing data patterns. Although I mostly discuss models with analytic solutions for the 
estimates, I introduce iterative optimization algorithms in this chapter, as they will be 
the norm with missing data.

2.2 PROBABILITY DISTRIBUTIONS 
VERSUS LIKELIHOOD FUNCTIONS

Probability distributions and likelihood functions play a prominent role throughout the 
book, so it is important to introduce these concepts early and establish some recurring 
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notation. A binary outcome with score values of 0 and 1 provides a simple platform for 
exploring some key ideas. As the name implies, a probability distribution is a math-
ematical function that describes the relative frequency of different score values. The 
Bernoulli distribution below describes the probability of the two scores:
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The function on the left side of the equation says that the probability of a particular 
score value depends on the unknown population proportion π to the right of the vertical 
pipe (the pipe means “conditional on” or “depends on”). The right side of the equation 
gives the rules for computing the two probabilities.

To provide a substantive context, I use the math achievement data on the com-
panion website. Among other things, the data set includes pretest and posttest math 
achievement scores and academic- related variables (e.g., math self- efficacy, standard-
ized reading scores, sociodemographic variables) for a sample of N =	250 students (see 
Appendix). One of the variables in the data is a binary indicator that measures whether 
a student is eligible for free or reduced- priced lunch (0 =	no assistance, 1 =	eligible for 
free or reduced- price lunch). Hypothetically, suppose we knew that the true proportion 
of eligible students in the population is π =	.45. Figure 2.1 displays the probability dis-
tribution as a bar graph, and its mathematical description is f(Yi|π =	.45). I use generic 
function notation f(∙) throughout the book to represent the height of a distribution or 
curve at some value on its horizontal axis, so “f of something” always refers to vertical 
elevation. In this example, f(Yi|π =	 .45) is just a fancy way of referencing the vertical 
height of the bars in Figure 2.1.

The figure and previous equation highlight the defining feature of a probability 
distribution: Probabilities must sum to 1. The same is true for continuous probability 
distributions like the normal curve, where the area under the curve must equal 1. We 
will encounter many different curves and functions throughout the book, not all of 
which are probability distributions. The likelihood is one important example. Returning 
to Equation 2.1, the function on the left side of the expression has two inputs inside the 
parentheses: data values and a parameter. The ordering of the two inputs implies that 
the data values vary, but the parameter to the right of the vertical pipe (the “conditional 
on” symbol) functions as a known constant; that is, the probability distribution says 
how likely certain scores are given an assumed value for π.

After collecting data, the function is “reversed” by treating scores as known and 
varying the parameter π. The resulting likelihood function describes the relative fre-
quency of different parameter values given the observed data. For example, suppose that 
we collect data from a single student who is eligible for free or reduced- price lunch (i.e., 
Y =	1). Reversing the role of the data and the parameter in the function gives the follow-
ing likelihood expression:

 ( ) ( )01| 1 1i iL Yπ = = π − π = π  (2.2)
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The left side of the equation now says that the likelihood of a particular parameter value 
depends on the observed data. Consistent with the previous function notation, “L of 
something” references the height of the distribution at a particular value on the horizon-
tal axis, but the abscissa now reflects all possible values of π between 0 and 1.

To illustrate the effect of reversing the function’s arguments, Figure 2.2 graphs the 
likelihood in Equation 2.2 across the entire range of π. The height of the graph—the 
likelihood of the parameter given the observed data— quantifies the data’s support 
for every possible value of π. Two points are worth highlighting. First, the probabil-
ity distribution of the data is discrete, but the likelihood function is a continuous 
distribution. Second, notice that the function defines a triangle with an area equal to 
0.50. Thus, by the previous definition, the likelihood is not a probability distribution, 
because the area under the function does not equal 1. This distinction is important, 
because it is incorrect to say that Li(π|Yi) describes the probability of the parameter 
given the data—that interpretation is reserved for a Bayesian analysis. Rather, you 
should view likelihood as a function that describes the data’s evidence or support for 
different parameter values. As you will see later in the chapter, the likelihood function 
provides the mathematical machinery for identifying parameter values that maximize 
fit to the observed data.

 FIGURE 2.1.  The probability distribution for a binary variable that measures whether a stu-
dent is eligible for free or reduced- priced lunch. The bar graph corresponds to a distribution 
where the true proportion π =	.45.
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2.3 THE UNIVARIATE NORMAL DISTRIBUTION

The applications of maximum likelihood estimation in this chapter primarily lever-
age the normal distribution. The normal curve is a reasonable approximation for many 
continuous variables that we encounter in the behavioral and social sciences, and it 
also appears prominently later in the book as a latent response distribution for cat-
egorical variables (Albert & Chib, 1993; Johnson & Albert, 1999). A univariate analysis 
example is a useful starting point, because the basic estimation principles from this 
simple context readily generalize to more complicated analyses. Continuing with the 
math achievement data, I use the math posttest scores to illustrate how to estimate the 
mean and variance with maximum likelihood. As you will see, the mechanics of this 
simple example readily extend to more complex analyses.

To begin, the probability distribution for a normally distributed variable is
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where Yi is the outcome score for participant i (e.g., a student’s math posttest score), and 
μ and σ2 are the population mean and variance. To reiterate some important notation, 
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 FIGURE 2.2.  The likelihood function describing the relative frequency of different parameter 
values given a single observation where Y = 1. The height of the graph—the likelihood of the 
parameter given the observed data— quantifies the data’s support for every possible value of π.
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the function on the left side of the equation can be read as “the relative probability of 
a score given assumed values for the parameters.” Visually, “f of Y” is the height of the 
normal curve at a particular score value on the horizontal axis. Dissecting the right side 
of the expression, the kernel inside the exponential function defines the curve’s shape. 
Notice that the main component is a squared z-score that quantifies the standardized 
distance between a score and the mean. Finally, the fraction to the left of the exponential 
function is a scaling term that ensures that the area under the curve sums or integrates 
to 1. This scaling term makes the function a probability distribution.

From the previous section, you know that a probability distribution treats scores as 
variable and parameters as known constants. To illustrate, assume that the true popula-
tion parameters are μ =	56.79 and σ2 =	87.72 (these happen to be the maximum likeli-
hood estimates). Next, consider two math scores, Y1 =	53 and Y2 =	45. Substituting these 
scores and the parameter values into Equation 2.3 gives f(Y =	53|μ, σ2) =	0.039 and 
f(Y =	45|μ, σ2) =	0.019. As seen in Figure 2.3, “f of something” refers to the height of the 
normal curve at a particular score value on the horizontal axis. Although these verti-
cal coordinates look like probabilities, they are not—the probability of any one score is 
effectively 0, because the horizontal axis can be sliced into a countless number of infini-
tesimally small intervals. Rather, the height coordinates represent relative probabilities. 
For example, it is incorrect to say that 3.9% of all students from this population have a 
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 FIGURE 2.3.  A normal distribution with parameters μ =	56.79 and σ2 =	87.72. The black dots 
are the relative probabilities for two math scores: f(Y = 53|μ, σ2) =	0.039 and f(Y =	45|μ, σ2) =	
0.019.
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test score of 53, but you can say that a score of 53 is about twice as likely as a score of 45, 
because its vertical elevation is twice as high.

The Likelihood and Log-Likelihood Functions
The goal of maximum likelihood estimation is to identify the population parameter 
values most likely to have produced a particular sample of data. After collecting data, 
the function is “reversed” by treating scores as known and varying the parameters. The 
likelihood expression for a single observation is
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where Li represents one observation’s support for a particular combination of the mean 
and variance. The likelihood expression might seem like a notational sleight of hand 
since the right side of the expression is identical to Equation 2.3. However, the notation 
on the left side of the equation signals an important shift: The probability distribu-
tion views scores as hypothetical and parameters as known, whereas likelihood views 
parameters as hypothetical and scores as known. Applied to the math achievement data, 
Equation 2.4 quantifies the degree to which one observation from this sample supports 
different values of μ and σ2.

Identifying the maximum likelihood estimates requires a summary measure that 
quantifies the entire sample’s evidence about the unknown parameter values. From 
probability theory, the product of individual probabilities describes the joint occurrence 
of a set of independent events. For example, the probability of flipping a fair coin twice 
and observing two heads in a row is .50 × .50 =	.25. Applying this rule to the individual 
likelihood expressions gives the sample likelihood function.
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Extending previous ideas, the likelihood quantifies a particular sample’s support for dif-
ferent values of μ and σ2. Visually, the likelihood function describes a three- dimensional 
surface with the population mean and variance on the horizontal and depth axes and 
L as the height of the surface at each unique combination of the two parameters. It 
is important to reiterate that the likelihood function is not a probability distribution, 
because the area under the surface does not equal 1.

Applying Equation 2.5 to the math data involves multiplying 250 very small num-
bers, each of which requires many decimals to achieve good precision. As you can imag-
ine, the resulting product is infinitesimally small. Taking the natural logarithm of the 
relative probabilities provides a more tractable metric. This transformation maps prob-
abilities onto the negative side of the number line, with higher probabilities taking on 
“less negative” values than lower probabilities. To illustrate, reconsider the pair of math 
scores and the parameters from the previous example: Y1 =	53, Y2 =	45, μ =	56.79, and σ2 =	
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87.72. Transforming the relative probabilities to the logarithmic scale gives ln(0.039) =	
–3.24 and ln(0.019) =	–3.96. Figure 2.4 shows that –3.24 and –3.96 also represent height 
coordinates, but the log transformation has changed the normal curve to a parabola. 
Nevertheless, the conclusion is the same: A score of 53 is more likely than a score of 45.

Working with logarithms changes the structure of the likelihood, because the loga-
rithm product rule says to add rather than multiply the transformed likelihood values 
(i.e., ln(A × B) =	ln(A) + ln(B)). Applying the product rule gives the log- likelihood func-
tion below.
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Visually, the log- likelihood function defines a three- dimensional surface, the height of 
which represents the data’s support for a unique combination of the parameters. Figure 
2.5 shows the likelihood surface for a range of different parameter combinations. To get 
a better look at the surface, Figure 2.6 is a contour plot that conveys the perspective of a 

 FIGURE 2.4.  Natural logarithm of a normal distribution with parameters μ =	56.79 and σ2 =	
87.72. The black dots represent the natural log of two relative probabilities: ln(.039) =	–3.24 and 
ln(.019) =	–3.96.
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drone hovering over the peak of the log- likelihood surface, with smaller contours denot-
ing higher elevation (and vice versa). The data’s support for the parameters increases as 
the contours get smaller, and the maximum likelihood estimates are located at the peak 
of surface, shown as a black dot. The goal of estimation is to identify the parameter val-
ues at that coordinate.

As you might have surmised, the log- likelihood value will always be a large nega-
tive number, because it sums individual fit values that are themselves usually negative 
numbers. For example, the peak of the function in the previous figures has a vertical 
elevation of LL =	–913.999, and the log- likelihood values decrease (i.e., become more 
negative) as μ and σ2 move away from their optimal values for the data. Several factors 
influence the log- likelihood value (e.g., the sample size, the number of variables, the 
amount of missing data), and there is no cutoff that determines good or bad fit to the 
data. However, we can use the log- likelihood to make relative judgments about different 
candidate parameter values. These relative fit assessments are an integral part of estima-
tion and hypothesis testing.

 FIGURE 2.5.  Bivariate log- likelihood surface for different values of μ and σ2. The height of the 
surface represents the data’s support for different combinations of the mean and the variance. 
Note that the floor of the function is located well below the minimum value on the vertical axis.
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2.4 ESTIMATING UNKNOWN PARAMETERS

The key take-home message thus far is that “reversing” a probability distribution by 
treating the observed data as known constants defines a log- likelihood function that 
measures the data’s support for different candidate parameter values. The goal of esti-
mation is to identify the parameter values that maximize the log- likelihood function, 
as these are the values that garner the most support from the data. Visually, this corre-
sponds to finding the peak of the three- dimensional surface in Figures 2.5 and 2.6. The 
resulting estimates are optimal in the sense that they minimize the sum of the squared 
z-scores in the normal distribution function. There are three main ways to find the max-
imum likelihood estimates: (a) a grid search that computes the log- likelihood value for 
each unique combination of the parameter values, (b) an analytic solution that provides 
an equation for solving the estimates, and (c) an iterative optimization algorithm. The 
first approach is usually too unwieldly and inefficient for practical applications, but it is 
a good starting point for this simple example, because it illustrates important concepts. 
I describe analytic solutions and optimization algorithms later in the chapter.

 FIGURE 2.6.  Contours of the log- likelihood surface at different values of μ and σ2. The plot 
conveys the perspective of a drone hovering over the peak of the log- likelihood surface, with 
smaller contours denoting higher elevation (and vice versa). The height of the surface represents 
the data’s support for different combinations of parameter values, and the maximum likelihood 
estimates are located at the peak of surface (shown as a black dot).
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To illustrate the mechanics of a grid search, Table 2.1 shows individual and sample 
log- likelihood values at five different estimates of the population mean (to keep the 
illustration simple, I held the variance constant at its maximum likelihood estimate). As 
you might expect, an individual’s contribution to the log- likelihood differs across the 
five estimates, because a given score offers more support for some parameter values than 
others (i.e., the standardized distances from the scores to the center of the normal curve 
change with different values of μ). The summary log- likelihood values in the bottom 
row of Table 2.1 similarly fluctuate as a function of the population mean. As explained 
previously, the log- likelihood summarizes the data’s support for a particular combina-
tion of parameter values, such that higher (i.e., less negative) values reflect better fit to 
the data. If the five means in the table were our only options, we would choose μ̂ =	57 
as the maximum likelihood estimate, because this parameter value maximizes fit to the 
sample data (i.e., minimizes the sum of the squared z-scores).

Next, I conducted a comprehensive grid search that varied the population mean 
in tiny increments of 0.01 and plotted the resulting log- likelihood values in Figure 2.7. 
As you can see, the function resembles a hill or a parabola, with the optimal parameter 
value located at its peak. This brute-force estimation process revealed that the curve’s 
highest elevation, LL =	–913.999, is located at μ =	56.79, and no other value of the mean 
has more support from the data. As such, μ̂ =	56.79 is the maximum likelihood estimate 
of the mean, or the population parameter with the highest probability of producing this 
sample of 250 math scores. I applied the same grid search procedure to the variance after 
fixing the mean at its maximum likelihood estimate. Figure 2.8 shows the resulting log- 
likelihood function. Although the function looks very different— the right skew owes 

TABLE 2.1. Individual and Sample Log-Likelihoods at Five Values of μ
Y μ =	53 μ =	55 μ =	57 μ =	59 μ =	61

63 –3.72601 –3.52081 –3.36120 –3.24720 –3.17880
53 –3.15599 –3.17880 –3.24720 –3.36120 –3.52081
71 –5.00285 –4.61524 –4.27323 –3.97682 –3.72601
53 –3.15599 –3.17880 –3.24720 –3.36120 –3.52081
57 –3.24720 –3.17880 –3.15599 –3.17880 –3.24720
55 –3.17880 –3.15599 –3.17880 –3.24720 –3.36120
59 –3.36120 –3.24720 –3.17880 –3.15599 –3.17880
. . . . . . . . . . . . . . . . . .

54 –3.16170 –3.16170 –3.20730 –3.29850 –3.43530
71 –5.00285 –4.61524 –4.27323 –3.97682 –3.72601
49 –3.24720 –3.36120 –3.52081 –3.72601 –3.97682
54 –3.16170 –3.16170 –3.20730 –3.29850 –3.43530
61 –3.52081 –3.36120 –3.24720 –3.17880 –3.15599
51 –3.17880 –3.24720 –3.36120 –3.52081 –3.72601
38 –4.43853 –4.80334 –5.21375 –5.66977 –6.17138

Sums –934.4897 –918.5749 –914.0604 –920.9462 –939.2323
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 FIGURE 2.7.  Likelihood function with respect to the mean, holding the variance constant 
at its sample estimate. The log- likelihood on the vertical axis represents the data’s support for a 
particular parameter value. The peak of the function is the maximum likelihood estimate of the 
mean.
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 FIGURE 2.8.  Likelihood function with respect to the variance, holding the mean constant at 
its maximum likelihood estimate. The log- likelihood on the vertical axis represents the data’s 
support for a particular parameter value. The maximum likelihood estimate of the variance is 
located at the peak of the function.
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to the fact that the variance is bounded at 0 on the low end—the graph nevertheless 
displays the data’s support for different parameter values. The brute-force grid search 
revealed that σ̂2 =	87.72 is the maximum likelihood estimate of the variance.

2.5 GETTING AN ANALYTIC SOLUTION

You can imagine that a grid search quickly becomes impractical as the number of model 
parameters increases. A second approach is to derive an equation that gives an ana-
lytic solution for the maximum likelihood estimates. Although this strategy has limited 
applications, the mechanics of getting the solution— in particular, leveraging calculus 
derivatives— sets the stage for the iterative optimization algorithms that I discuss later 
in the chapter.

To begin, a first derivative is a slope coefficient. Returning to Figure 2.7, the log- 
likelihood function is a parabolic curve. Imagine using a magnifying glass to zoom in 
on the log- likelihood function within a very narrow slice along the horizontal axis. 
Although the entire function has substantial curvature, magnifying the log- likelihood 
at a particular point on the curve would reveal a straight line. Thus, you can think of 
the curved function in Figure 2.7 as stringing together a sequence of very tiny straight 
lines, the direction and magnitude of which vary as you move from left to right on the 
horizontal axis. These linear slopes are the first derivatives of the function. To infuse a 
bit more precision, the first derivative is the slope of a line that is tangent to the function 
at a particular value on the horizontal axis. To illustrate, Figure 2.9 shows the deriva-
tives at five values of μ. I refer to these slopes as the first derivatives of the log- likelihood 
function with respect to the mean, because the variance (the other unknown quantity in 
the function) is held constant. First derivatives are central to finding an equation for 
the maximum likelihood estimates, and they also appear prominently in the iterative 
optimization algorithms I discuss later in the chapter.

Moving from left to right across Figure 2.9, the derivatives decrease in magnitude 
(i.e., the slopes flatten) as elevation rises, and the slope is exactly 0 at the function’s 
peak. The fact that the first derivative is 0 at the point on the function directly above the 
maximum likelihood estimate suggests that we can set the derivative expression to 0 
and solve for the unknown parameter. First, we need the derivative equations. I give the 
expressions below, and introductory calculus resources catalog the differential calculus 
rules for getting the first derivatives of a function. To begin, the first derivative of the 
log- likelihood function with respect to the mean (i.e., the linear slopes in Figure 2.9) is 
as follows:

 ( ) ( )
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In words, the left side of the expression reads “the first derivative of the log- likelihood 
function with respect to the mean,” where ∂ is a common symbol for a derivative, and 
the fraction denotes the differential operator. Setting the right side of the equation equal 
to 0 and solving for μ gives the maximum likelihood estimate of the mean.
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Notice that μ̂ is identical to the familiar formula for the arithmetic mean. Consistent 
with the previous grid search, applying the expression to the math posttest scores gives 
a maximum likelihood estimate of μ̂ =	56.79.

Differentiating the log- likelihood function with respect to the variance gives the 
slopes of tangent lines at different points on the function in Figure 2.8.
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Again, setting the right side of the equal to 0 and solving for σ2 gives the maximum 
likelihood estimate of the variance.
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Notice that the maximum likelihood solution has N rather than N – 1 in the denomi-
nator. We know that applying the equation for the population variance to sample data 

 FIGURE 2.9.  Likelihood function with respect to the mean, holding the variance constant at 
its maximum likelihood estimate. The dashed lines represent first derivatives, or slopes of lines 
tangent to the function at each black dot.
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gives negatively biased estimates that underrepresent population- level variation, and 
the same is true for maximum likelihood variance estimates. This bias is an issue in 
small samples but quickly becomes negligible as N increases. Such is the case with the 
math achievement data, where the maximum likelihood and unbiased estimates are 
very similar: σ̂2 =	87.72 and s2 =	88.07.

2.6 ESTIMATING STANDARD ERRORS

The log- likelihood function provides a mechanism for estimating standard errors, and 
this, too, relies on calculus derivatives. The process lends itself well to graphical dis-
plays, so I interleave a conceptual description with the technical details. To set the stage, 
Figure 2.10 shows the log- likelihood functions for two data sets with the same mean but 
different variance. The solid curve, which is identical to Figure 2.7, corresponds to the 
math posttest data, and the flatter dashed function comes from a data set with 50% more 
variance (i.e., σ̂2 =	131.58 vs. 87.72).

The curvature of the log- likelihood function (i.e., its steepness or flatness) deter-
mines the precision of the maximum likelihood estimate at its peak. To understand why 
this is the case, recall that the log- likelihood quantifies the data’s evidence for different 
candidate parameter values. Looking at the solid curve in Figure 2.10, you can see that the 
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 FIGURE 2.10.  Log- likelihood functions for two data sets with the same mean but different 
variance. The solid curve, which is identical to Figure 2.7, corresponds to the math posttest data, 
and the flatter dashed function comes from a data set with 50% more variance.
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data’s support for competing parameter values decreases rapidly as μ moves away from its 
optimal value in either direction. In contrast, the dashed curve is much flatter, meaning 
that the data provide similar support for a range of parameter values near the peak. As 
such, the steeper function reflects a more precise estimate with a smaller standard error. 
This makes intuitive sense if you think about estimation as a hiker trying to climb to the 
highest possible elevation on a mountain. A climber standing at the top of a steep peak 
would be very certain about reaching the exact summit, because elevation drops quickly 
in every direction, whereas a climber standing on a flatter plateau would be less confident 
about the summit’s precise location. To apply this idea to data, we need to figure out how 
to quantify curvature of the log- likelihood and translate that into a standard error.

Second Derivatives
Measuring curvature and computing standard errors requires the second derivatives of 
the log- likelihood function. These second derivatives, which are also slope coefficients, 
have an intuitive visual interpretation. To illustrate, Figure 2.11 displays the first deriva-
tives of the two log- likelihood functions from Figure 2.10. Moving from left to right, 
the linear slopes along the steep curve vary substantially, changing from large positive 
values on the left to large negative values on the right. Conversely, the slopes along the 
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 FIGURE 2.11.  Log- likelihood functions for two data sets with the same mean but different 
variance. The straight lines represent first derivatives. The steep function has rapidly changing 
first derivatives and thus a large second derivative, whereas the flatter function has a smaller 
second derivative, because its slopes don’t change as much near the peak.
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flatter curve exhibit less variability, ranging from moderately positive to moderately 
negative. Mathematically, a second derivative captures the rate at which the first deriva-
tive slopes change across the log- likelihood function. For example, the steep function 
in Figure 2.11 has rapidly changing first derivatives and thus a large second derivative. 
Conversely, the flatter function has a smaller second derivative, because its slopes don’t 
change as much near the function’s peak.

Second derivatives can be confusing, because they are metaquantities that capture 
the rate of change in the linear slopes; that is, they are equations that give the slope of the 
slopes. A regression analogy is useful for sorting this out. Returning to Figure 2.9, you can 
think of the curve as a nonlinear regression line that predicts the log- likelihood at different 
values of the parameter (i.e., the parameter is the predictor variable, and the log- likelihood 
is the outcome). The linear term from this regression, which is the first derivative, tells us 
how much the log- likelihood changes for an infinitesimally small increase in the parame-
ter. The second derivative is also a slope from a regression, but that regression now predicts 
the first derivatives at different values of the parameter (i.e., the parameter is the predictor 
variable, and the first derivative is the outcome). Because the linear slopes change at a 
constant rate across the parabolic function, the second derivative reflects the change in the 
slope for each one-unit increase in the population mean. The regression analogy highlights 
that first and second derivatives are just the same concept applied to different variables.

To illustrate second derivatives more concretely, reconsider the first derivative slope 
expression from Equation 2.7. We know that substituting μ̂ =	56.79 into the formula (i.e., 
evaluating the function at the maximum likelihood estimate) returns a slope coefficient 
of 0. Next, we can use the expression to compute the first derivative after increasing 
or decreasing the mean by 1 point. Starting with the steep curve in Figure 2.11, sub-
stituting μ =	55.79 and 57.79 into the equation gives first derivatives equal to +2.85 and 
–2.85, respectively. Thus, we can verify that a one-unit increase in the population mean 
changes the first derivative (i.e., the slope of the log- likelihood at a particular point) by 
–2.85. This value is the second derivative! Moving to the flatter function, substituting 
the same two estimates into the equation gives first derivatives equal to +1.90 and –1.90, 
respectively. A one-unit increase in the population mean now induces smaller changes 
in the linear slopes, because the log- likelihood function is less peaked. As you can see, 
larger second derivatives (in absolute value) reflect greater curvature and more preci-
sion, whereas smaller second derivatives imply less curvature.

I previously explained that second derivatives are the same concept as a first deriva-
tive but applied to a different dependent variable (a function of the original function). 
As such, getting the second derivatives involves applying differential calculus rules to 
the slope equations from Equations 2.7 and 2.9. To begin, the second derivative of the 
log- likelihood function with respect to the mean (i.e., the curvature of the function in 
Figure 2.7) is as follows:

 
2

2 2

LL N∂
= −

∂μ σ
 (2.11)

Substituting σ̂2 =	87.72 (the maximum likelihood estimate) and N =	250 into the expres-
sion verifies the earlier conclusion that the second derivative equals –2.85. The second 
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derivative of the log- likelihood function with respect to the variance (i.e., the curvature 
of the function in Figure 2.8) is as follows:

 
( )

( ) ( ) ( )
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LL N
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− −

=

∂
= σ − σ − μ

∂σ
∑  (2.12)

Substituting σ̂2 =	87.72 and N =	250 in the expression gives a second derivative equal to 
–.016. Because the log- likelihood function in Figure 2.8 has multiple bends, the rate of 
change in the linear slopes is no longer constant going from left to right. Thus, we need 
to view the second derivative as curvature at the function’s peak. Again, you can think 
of this number (in absolute value) as the estimate’s precision.

You probably noticed that the values of the second derivative were both negative. 
In fact, this is not a coincidence, as the sign of the second derivative signals whether a 
solution corresponds to the maximum or the minimum of a function. To understand 
why this is the case, imagine a U- shaped log- likelihood function that is a mirror image 
of the parabola in Figure 2.7. When applied to a U- shaped function, the first derivative 
takes on a value of 0 at the lowest point on the curve (i.e., the bottom of a valley instead 
of the peak of a hill). The sign of the second derivative differentiates the minimum and 
maximum of a function and thus tells us whether an estimate is located at the bottom 
of a trough or the peak of a hill. To illustrate, imagine traversing a U- shaped function 
moving from left to right. Contrary to the derivatives displayed in Figure 2.9, the linear 
slopes from an inverted function change from large negative values to large positive 
values; that is, a one-unit increase to the parameter increases rather than decreases the 
slopes, thus giving a positive second derivative. Consequently, the fact that the second 
derivatives were negative is important, because it signals that the estimates are, in fact, 
located at the peak of the surface.

From Second Derivatives to Standard Errors
With second derivatives in hand, we can now compute standard errors. This process 
involves three steps: (1) Multiply each derivative by –1, (2) compute its reciprocal, and 
(3) take the square root. To begin, multiplying the second derivative by –1 gives a quan-
tity known as information or Fisher information (after statistician Ronald Fisher). This 
step rescales the derivative so that large positive values reflect greater precision or confi-
dence in the estimate. Second, computing the reciprocal or inverse of information gives 
the sampling variance, or the expected squared difference between the estimate and the 
true population parameter. Applying these first two steps to the mean and variance gives 
the following expressions for their sampling variances:

 ( )
1 2
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Finally, taking the square root of the sampling variance gives the standard error. Notice 
that the square root of Equation 2.13 is the familiar formula for the standard error of 
the mean, ˆ Nσ ÷ .

To illustrate standard error computations, reconsider the two log- likelihood func-
tions in Figure 2.11. The steeper curve corresponds to the math achievement data from 
the companion website, which has a variance σ̂2 =	87.72. Substituting this estimate into 
Equation 2.13 gives a sampling variance equal to var(μ̂) =	0.35 and a standard error 
equal to ˆSEμ =	0.59. Consistent with the usual interpretation of a standard error, 0.59 is 
the expected difference between the maximum likelihood estimate and the true popula-
tion mean, or the standard deviation of estimates from many random samples of size 
250. As a comparison, the dashed curve corresponds to a transformed data set with 50% 
more variance. Substituting σ̂2 =	131.58 into Equation 2.13 returns a sampling variance 
and standard error equal to var(μ̂) =	0.53 and ˆSEμ =	0.73, respectively. These results rein-
force the previous conclusion that steeper functions with more curvature reflect greater 
precision and smaller standard errors.

2.7 INFORMATION MATRIX AND PARAMETER 
COVARIANCE MATRIX

The log- likelihood function in Equation 2.6 varies as a function of two unknowns. 
Although the univariate analysis allows us to consider each parameter separately, with-
out regard to the other, changes to one parameter generally correlate with changes to 
another. Returning to the three- dimensional surface in Figure 2.5, the presence of such 
a correlation implies that curvature or elevation changes along one axis systematically 
track with elevation changes along the other. Although the mean and variance happen 
to be uncorrelated in this example, we need to establish a more generalizable recipe for 
computing standard errors that accounts for potential linkages among the parameters.

Second derivatives are obtained by applying differential calculus rules to the first 
derivative expressions (e.g., differentiating Equation 2.7 with respect to μ gives Equa-
tion 2.11). To get the association between two parameters, you differentiate the first 
derivative expression for one parameter with respect to a different parameter. For exam-
ple, to get the covariance between μ and σ2, you differentiate the slope expression from 
Equation 2.7 with respect to σ2 (or equivalently, differentiate the slope expression from 
Equation 2.9 with respect to μ). The cross- product derivative expression for this exam-
ple is as follows:
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The left side of the equation reads “first differentiate the log- likelihood with respect to 
the mean, then differentiate the resulting expression with respect to the variance” (or 
vice versa).

Next, the second derivatives and the cross- product terms are stored in a symmetric 
matrix known as the Hessian.
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Notice that the diagonal elements contain the second derivatives from Equations 2.11 
and 2.12, and the new addition from Equation 2.15 appears in the off- diagonal elements. 
The subscript on HO indicates that the derivative equations depend on the observed 
data (an alternate approach described below replaces data values with the expectations 
or averages), and θ denotes the parameter values. Substituting the maximum likelihood 
estimates into the expressions gives HO(θ̂).

Computing standard errors involves the same three steps as before. First, multiply-
ing the matrix of second derivatives by –1 gives the observed information matrix.

 ( ) ( )O O
ˆ ˆ= −θ θI H  (2.17)

As before, this step rescales the derivatives so that large positive values reflect greater 
precision or confidence in the estimates. Second, taking the inverse of the information 
matrix (the matrix analogue of a reciprocal) gives the variance– covariance matrix of 
the parameter estimates.

 ( )1
Oˆ

ˆˆ −
θ =S θI  (2.18)

The parameter covariance matrix for the univariate analysis has sampling variances on 
the diagonal and the covariance between the two estimates in the off- diagonal elements.
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You can see that the covariance between the mean and variance is 0, because the devia-
tion scores in the Hessian’s off- diagonal sum to 0. The independence of the mean and 
variance (or more generally, a model’s mean parameters and its variance– covariance 
parameters) is a well-known feature of maximum likelihood estimation. As you will 
see in the next chapter, this independence doesn’t necessarily hold with missing data 
(Kenward & Molenberghs, 1998; Savalei, 2010). Finally, taking the square root of the 
sampling variances on the diagonal of the variance– covariance matrix gives the stan-
dard errors (e.g., ˆSEμ =	 0.35 =	.59 and 2ˆ 61.55SEσ =  =	7.85).

Standard Errors Based on Expected Information
The observed information matrix is so named, because individual elements of the Hes-
sian matrix include deviation scores that rely on observed data values. Although this 
is usually the preferable way to compute standard errors, an alternative method based 
on the expected information matrix warrants brief discussion. With complete data, the 
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observed and expected information are often equivalent and produce identical stan-
dard errors. However, the two approaches are not always the same with missing data 
( Kenward & Molenberghs, 1998; Savalei, 2010).

Revisiting the Hessian matrix in Equation 2.16, the second derivatives reflect sum-
mations across the N scores. To see how expected information works, it is useful to look 
at a single observation’s contribution to these sums.
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The expected information matrix invokes a computational shortcut that replaces (Yi – μ) 
and (Yi – μ)2 with their expectations or long-run averages.

 ( ) 0iE Y − μ =  (2.21)

 ( )2 2
iE Y − μ = σ  

Substituting the expectations simplifies the Hessian as follows:
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Substituting the maximum likelihood estimates into the Hessian and multiplying the 
matrix by –1 gives the expected information matrix.
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Finally, taking the inverse of the information matrix gives the variance– covariance 
matrix of the estimates, the diagonal of which contains squared standard errors.

As you can see, the expected information is simpler to compute, because it does 
not rely on the raw data. With complete data, standard errors based on the observed 
and expected information are often indistinguishable, as they are in this example. This 
equality doesn’t necessarily hold with missing data, as the expectations in Equation 2.21 
require an MCAR process where missingness is unrelated to the data. In contrast, stan-
dard errors based on the observed information assume a less stringent MAR mechanism 
where missingness depends on the observed data. Simulation results favor standard 
errors based on observed information (Kenward & Molenberghs, 1998; Savalei, 2010), 
so I strictly rely on this approach.
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2.8 ALTERNATIVE APPROACHES TO ESTIMATING 
STANDARD ERRORS

The normal curve plays an integral role in every phase of maximum likelihood estima-
tion, as its log- likelihood function provides a basis for identifying the optimal estimates 
for the data and computing standard errors. Of course, non- normal data are exceedingly 
common, and some authors argue that normality is the exception rather than the rule 
(Micceri, 1989). Depending on the analysis model, maximum likelihood estimates may 
still be consistent when normality is violated, meaning that they converge to their true 
population values as the sample size increases (Yuan, 2009b; Yuan & Bentler, 2010). 
However, standard errors and significance tests are almost certainly compromised.

This section describes two alternate (and very different) strategies for estimating 
sampling variation when normality is violated: so- called “robust” or sandwich estimator 
standard errors (Freedman, 2006; Greene, 2017; White, 1980) and bootstrap resampling 
(Efron, 1987; Efron & Gong, 1983; Efron & Tibshirani, 1993). These methods have a 
long history in the literature and a substantial body of literature that generally supports 
their use (Arminger & Sobel, 1990; Enders, 2001; Finch, West, & MacKinnon, 1997; 
Gold & Bentler, 2000; Hancock & Liu, 2012; Rhemtulla, Brosseau- Liard, & Savalei, 
2012; Savalei & Falk, 2014; Yuan, 2009b; Yuan & Bentler, 2000, 2010; Yuan, Bentler, 
& Zhang, 2005; Yuan, Yang- Wallentin, & Bentler, 2012). I discuss analogous corrective 
procedures for significance tests later in the chapter.

Robust Standard Errors
The previous standard error formulation assumes that the model— including the 
assumed population distribution— is correctly specified. We can and often do apply 
maximum likelihood to non- normal or heteroscedastic data, in which case the estima-
tion procedure is known as quasi- maximum likelihood or pseudo maximum likeli-
hood estimation (Gourieroux, Monfort, & Trognon, 1984; Greene, 2017; White, 1996). 
Depending on the analysis model, pseudo maximum likelihood estimation may still 
provide consistent estimates that converge to the true population values as the sample 
size gets larger (Yuan, 2009b; Yuan & Bentler, 2010), but the usual expressions for stan-
dard errors are invalid. Alternative standard error expressions for misspecified models 
are widely referred to as robust standard errors or sandwich estimator standard errors.

Robust or sandwich estimator standard errors are a family of procedures that 
attempt to adjust for different types of model misspecification. For example, the stan-
dard errors I outline below are designed for distributional misspecifications but do not 
address independence violations resulting from clustered data (e.g., repeated measure-
ments nested in persons, students nested within schools); different types of misspecifi-
cations require different corrective procedures. I give a brief description of robust stan-
dard errors for non- normal data in this section, and several good tutorial papers are 
available to readers who want additional details (Freedman, 2006; Hayes & Cai, 2007; 
Savalei, 2014).

The term sandwich estimator stems from fact that the “robustified” parameter cova-
riance matrix has a three-part structure that resembles a sandwich. The normal- theory 
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covariance matrix from Equation 2.18 forms the outer pieces of “bread,” and the “meat” 
in the middle of the sandwich is a new matrix that captures deviations between the data 
and the assumed normal distribution. The sandwich estimator covariance matrix is

 ( ) ( ) ( )− −= × × =θ θ
S θ S θ1 1

ˆ ˆO O
ˆ ˆˆ ˆbread meat bread

S
I I  (2.24)

where IO(θ) is the information matrix from Equation 2.17, and the meat in the middle 
term is a new covariance matrix based on first derivatives (described below).

Revisiting Equations 2.7 and 2.9, the first derivative or slope expressions reflect 
summations across the N scores. To illustrate the composition of the meat term, we need 
to look at a single observation’s contribution to these equations. Arranging the terms in 
an array gives the so- called score vector for a single observation.
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The meat of the sandwich is the variance– covariance matrix of these score vectors eval-
uated at the maximum likelihood estimates (i.e., the ˆ( )

ˆ
S θS  term in Equation 2.24).

To understand how the formula works, you need know that IO(θ̂) and ˆ( )
ˆ
S θS  both esti-

mate the information matrix, albeit in different ways. When the data are normal, the two 
matrices are equivalent and effectively cancel out when multiplying one by the inverse 
of the other (the resulting product is an inert identity matrix), leaving only the normal- 
theory covariance matrix from Equation 2.18. In contrast, when the data are non- normal, 
the product of the two matrices has diagonal elements that reflect the relative magnitude 
of the two information matrices, and this array serves to rescale the parameter covari-
ance matrix in a way that compensates for kurtosis. Returning to the score vector in 
Equation 2.25, notice that the first derivative expressions include deviation scores. When 
the data are leptokurtic, the thicker tails produce a higher proportion of large deviation 
scores than a normal curve, and multiplying the first piece of bread by the meat returns 
a matrix containing large diagonal values that inflate the parameter covariance matrix 
(the rightmost piece of bread). In contrast, when the data are platykurtic, the distribution 
has fewer extreme scores than a normal curve, and the bread × meat product returns a 
matrix with fractional values that attenuate the covariance matrix elements.

Recall from the earlier example that the normal- theory standard errors for the 
mean and variance were ˆSEμ =	 0.35 =	0.59 and 2ˆ 61.55SEσ =  =	7.85, respectively. The 
sandwich estimator covariance matrix for the same data is as follows:
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Taking the square root of the diagonal elements gives ˆSEμ =	 0.35 =	.59 and 2ˆ 60.31SEσ =  
=	7.77. This example highlights two points. First, the standard error of the mean is the 
same in both cases, because this parameter is unaffected by the robustification pro-
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cess (White, 1982; Yuan et al., 2005). Second, the standard error of the variance barely 
changes, because the data are essentially normal (as noted previously, the sandwich 
estimator simplifies to the conventional covariance matrix in this case). More generally, 
a divergence between the two covariance matrices would likely signal a model mis-
specification (e.g., the normal distribution is a poor approximation for the data; King & 
Roberts, 2015; White, 1982).

Bootstrap Resampling
Bootstrap resampling (Efron, 1987; Efron & Gong, 1983; Efron & Tibshirani, 1993) is a 
second approach to generating standard errors that are robust to normality violations. 
The bootstrap uses Monte Carlo computer simulation to generate an empirical sampling 
distribution of each parameter estimate, the standard deviation of which is the stan-
dard error. This section describes a so- called “naive bootstrap” that generates standard 
errors, and modifications to the basic procedure can also generate sampling distribu-
tions of test statistics (Beran & Srivastava, 1985; Bollen & Stine, 1992; Enders, 2002; 
Hancock & Liu, 2012; Savalei & Yuan, 2009).

The basic idea behind the bootstrap is to treat the observed data as a surrogate 
for the population and draw B samples of size N with replacement; that is, after being 
selected for a bootstrap sample, each observation returns to the surrogate population 
and is eligible to be chosen again. The sampling with replacement scheme ensures that 
some data records appear more than once in each sample, whereas others do not appear 
at all. To illustrate, Table 2.2 shows five bootstrap samples from a small toy data set with 
10 observations. Drawing many bootstrap samples (e.g., B > 2,000) and fitting a model 
to each data set gives an empirical sampling distribution of the estimates. The standard 
deviation of B estimates is the bootstrap standard error

 ( )θ θ
=

= θ − θ =
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ˆ ˆ
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1

B

b
b

SE SD
B

 (2.27)

TABLE 2.2. Five Bootstrap Samples Drawn with Replacement
Y Sample 1 Sample 3 Sample 3 Sample 4 Sample 5

63 71 49 61 71 71
53 71 55 61 38 54
71 57 63 49 55 71
57 55 49 63 63 38
55 61 38 57 63 49
54 51 53 57 61 61
49 71 71 57 53 55
61 71 61 51 57 54
51 61 55 54 57 38
38 38 51 61 53 53
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where θ̂b is the maximum likelihood estimate from sample b, and θ is the average esti-
mate across the B samples. Finally, the 2.5 and 97.5% quantiles of the empirical distribu-
tion (i.e., the estimates that separate the most extreme 2.5% of the lower and upper tails 
of the distribution) define a 95% confidence interval. Unlike their theoretical counter-
parts, bootstrap confidence intervals need not be symmetric around the average point 
estimate.

2.9 ITERATIVE OPTIMIZATION ALGORITHMS

This chapter focuses primarily on analyses with analytic solutions for the maximum 
likelihood estimates. Beyond the univariate example, this includes linear regression 
models and multivariate analyses involving a mean vector and covariance matrix. 
Many, if not most, applications of maximum likelihood do not have analytic solutions, 
and even the tidy problems from this chapter become messy later with missing data. 
I describe two such algorithms in this chapter, gradient ascent and Newton’s method, 
and in Chapter 3, I describe the expectation maximization (EM) algorithm (Dempster, 
Laird, & Rubin, 1977; Rubin, 1991).

Returning to the log- likelihood function in Figure 2.7, an optimization algorithm 
tasked with finding the maximum likelihood estimates is like a hiker trying to reach 
the summit of a mountain. The hiker could start the trek at different trailheads, and that 
starting point would dictate the direction of travel and rate of ascent. Similarly, optimi-
zation algorithms need initial guesses about the parameter values, and software defaults 
could generate starting values on either side of hill. The first derivative is like a compass 
in the sense that its sign tells the algorithm the direction it needs to travel to reach the 
curve’s maximum elevation. For example, starting the climb at μ =	45 requires positive 
adjustments to the parameter, whereas starting at μ =	65 requires negative adjustments. 
The starting coordinates also dictate the size of the hiker’s steps. If the trek begins far 
from the peak, the hiker can take big steps without worrying about missing the summit. 
In contrast, the surface flattens near the top where very tiny steps are needed to find the 
exact location of the peak. The size of each step links to the magnitude of the derivatives 
in Figure 2.9, with larger slopes inducing bigger steps, and slopes closer to 0 requiring 
very small steps.

Gradient Ascent
Gradient ascent (or equivalently, gradient descent, if you invert the log- likelihood func-
tion) is a good starting point for exploring iterative optimization, because it parallels 
the hiking analogy. Starting with an initial guess about the parameter, the algorithm 
takes repeated steps in the direction of maximum until it finds the optimal estimate for 
the data. The iterative recipe for gradient ascent is straightforward: At each iteration, 
compute an updated estimate that equals the previous estimate plus some adjustment, 
the size of which depends on the first derivative or slope. More formally, the updating 
step is
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 = +new estimate current estimate step size  (2.28)

 ( ) ( )1 constantt t LL+ ∂ θ = θ + × ∂θ 
 

where θ denotes the parameter of interest, t indexes the iterations, and the step size term 
in parentheses is the first derivative (evaluated at the current estimate) times a small 
constant, sometimes referred to as the learning rate.

To illustrate iterative optimization, I applied gradient ascent to the mean (to keep 
the illustration simple, I held the variance at its maximum likelihood estimate). A cus-
tom R program is available on the companion website for readers interested in coding 
the algorithm by hand. To begin, I initiated the process with a starting value of μ(0) =	0 
and a constant learning rate of .25 (the constant is usually some small value between 0 
and 1). Substituting the initial parameter value into the first derivative expression from 
Equation 2.7 (i.e., evaluating the function at μ =	0) gives a slope equal to 161.86. The 
huge positive slope implies a correspondingly large positive adjustment to the param-
eter. Multiplying the derivative by the learning rate gives a step size equal to 161.86 × 
.25 =	40.47 and an updated parameter value equal to μ(1) =	40.47. The new estimate is 
closer to the peak, so the slope coefficient decreases in magnitude to 46.53. Repeating 
the process gives a step size equal to 46.53 × .25 =	11.63 and an updated estimate equal 
to μ(2) =	52.10.

Table 2.3 gives the parameter updates, first derivatives, and log- likelihood values 
from 17 iterations. As you can see, the first few cycles produced steep slope coefficients 

TABLE 2.3. Iterative Updates from a Gradient Ascent Algorithm
Iteration μ Slope Log-likelihood

 0  0.0000000 161.8619279 –5510.230027773
 1 40.4654820  46.5319355 –1293.850964489
 2 52.0984659  13.3769630  –945.391338786
 3 55.4427066   3.8455985  –916.593142769
 4 56.4041062   1.1055295  –914.213136500
 5 56.6804886   0.3178167  –914.016442587
 6 56.7599428   0.0913657  –914.000186960
 7 56.7827842   0.0262657  –913.998843525
 8 56.7893507   0.0075509  –913.998732498
 9 56.7912384   0.0021707  –913.998723322
10 56.7917810   0.0006240  –913.998722564
11 56.7919371   0.0001794  –913.998722501
12 56.7919819   0.0000516  –913.998722496
13 56.7919948   0.0000148  –913.998722496
14 56.7919985   0.0000043  –913.998722496
15 56.7919996   0.0000012  –913.998722496
16 56.7919999   0.0000004  –913.998722496
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and large adjustments to the parameter. The vertical elevation of the log- likelihood also 
increased rapidly as the algorithm took large strides toward the peak. In contrast, the 
final few iterations induced very small adjustments to the mean, and changes to the log- 
likelihood were in the 10th decimal. Continuing to iterate until the derivative equals 0 is 
inefficient and unnecessary, because any additional improvement to the estimate would 
be infinitesimally small (e.g., after 17 iterations, the estimate is changing in the seventh 
decimal place). Instead, I terminated the iterations when the estimates from consecutive 
steps differed by less than .000001, as changes of this magnitude effectively signal that 
the algorithm has reached the summit.

Newton’s Algorithm
Gradient ascent is useful for establishing some intuition about iterative optimization, 
but the simple variant I describe here can be slow to converge and may not converge 
at all when variables have different scales. Newton’s algorithm (also known as the 
Newton– Raphson algorithm) similarly parallels the hiking analogy, but it uses a more 
complex formulation for the step size that requires first and second derivatives. The 
upside of this additional complexity is that the updating step naturally provides the 
building blocks for computing standard errors after the final iteration. To illustrate the 
basic ideas, reconsider the log- likelihood function with respect to the variance in Figure 
2.8. Although the log- likelihood is a complex curve with multiple bends, magnifying a 
graph of the function at its maximum would reveal a simpler curved line that resembles 
a quadratic function (i.e., an inverted U, or a parabola). Leveraging this idea, Newton’s 
algorithm uses the first and second derivative values (i.e., the linear slope and curvature 
at a specific point on the function) to construct a parabolic curve that extends from the 
current parameter value toward the log- likelihood’s peak. The apex of each quadratic 
function represents the algorithm’s best guess about the maximum likelihood estimate 
at a particular iteration, and this temporary peak becomes the updated parameter value 
for the next iteration.

Figure 2.12 shows the log- likelihood function, with black dots denoting four con-
secutive parameter values. The three dashed lines are quadratic curves assembled from 
the first and second derivative formulas. To illustrate the iterative updates, suppose that 
the optimizer begins its ascent from a starting value of σ2(0) =	50. A black dot appears 
on the log- likelihood function at this coordinate, and the leftmost dashed curve (the 
smallest of the three) is the parabolic function that projects from the starting value. The 
dashed curve is trying to approximate what the log- likelihood function looks like near 
its summit, and the apex of the curve represents the parabola’s best guess about the 
maximum likelihood estimate at the initial iteration. The peak of the quadratic curve, 
located at σ2(1) =	65.03, becomes the new estimate for the next iteration. Repeating the 
process, the algorithm substitutes the updated estimate into the first and second deriva-
tive expressions and uses the resulting quantities to project another quadratic function 
from the new coordinate. The middle of the three dashed curves shows the parabola for 
this step, the peak of which is located at σ2(2) =	78.40. Similarly, the rightmost dashed 
curve shows the quadratic approximation at the third iteration, the maximum of which 
corresponds to σ2(3) =	85.93. You can see that the dashed curves become wider and flat-
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ter as elevation increases, such that each successive update does an increasingly better 
job at approximating the shape of the log- likelihood function near its peak. After a few 
more iterations, the algorithm locates the summit.

More formally, the jump from the current to the updated parameter value is as fol-
lows:

= +new estimate current estimate step size (2.29)

( ) ( )
12

1
2

t t LL LL
−

+  ∂ ∂ θ = θ −      ∂θ∂θ   

The step size, computed as the ratio of the first and second derivatives at the current 
parameter value θt, corresponds to the horizontal distance between the current estimate 
and the peak of the projected quadratic curve. In effect, Newton’s algorithm is breaking 
the total vertical elevation into several smaller hikes, and the derivative terms function 
as a wayfinder that plots the route to each intermediate peak. The updating step readily 
extends to more complex models with multiple parameters. In this case, the multivari-
ate updating equation is

 FIGURE 2.12.  The likelihood function with respect to the variance, holding the mean con-
stant at its maximum likelihood estimate. The black dots represent four consecutive updates 
to the variance beginning at the starting value σ2(0) =	50. The three dashed lines are quadratic 
curves assembled from the first and second derivative formulas, and the peak of each parabola 
identifies the updated parameter value at the next iteration.
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 ( ) ( )1 1 ( ) ( )( ) ( )t t t t+ −= −θ θ θ θH S  (2.30)

where θ is a vector of parameter values, t indexes the iterations, S(θ(t)) is the vector of 
first derivatives (i.e., the score vector, computed as the sum of Equation 2.25 across all 
N observations), and the rightmost term is the Hessian matrix of second derivatives.

To illustrate a multivariate optimization scheme, I used Newton’s algorithm to esti-
mate the mean and variance of the math posttest scores. A custom R program is available 
on the companion website for readers interested in coding the algorithm by hand. In this 
example, S(θ) is a vector containing the slope expressions from Equations 2.7 and 2.9, 
and H(θ) is the second derivative matrix from Equation 2.16. The multivariate updating 
scheme is virtually identical to the univariate scheme depicted in Figure 2.12, except 
that each parameter’s parabolic approximation now accounts for the associations in the 
Hessian’s off- diagonal. Table 2.4 shows the iterative updates from a climb initiated at 
(terrible) starting values of μ(0) =	0 and σ2(0) =	1. Notice that the algorithm immediately 
locates the optimal estimate of the mean after the first update. Returning to Figure 
2.7, the log- likelihood with respect to the mean is itself a parabolic function, so the 
optimizer can immediately predict the peak of the function from any starting value. In 
contrast, the algorithm requires 17 iterations to locate the optimal value of the variance. 
Consistent with gradient ascent, you can see that the optimizer makes large adjustments 
at first and very small alterations as it approaches the peak.

TABLE 2.4. Iterative Updates from Newton’s Algorithm
Iteration μ σ2 Log-likelihood

 0 0 1  –414360.734633301
 1 56.79200000  1.49992453 –7590.507280671990
 2 56.79200000  2.24341946 –5218.181032416420
 3 56.79200000  3.35059911 –3653.304333842760
 4 56.79200000  4.99327916 –2626.616256992080
 5 56.79200000  7.41677626 –1958.552805664100
 6 56.79200000 10.96146467 –1529.318174000000
 7 56.79200000 16.07692601 –1258.915758159560
 8 56.79200000 23.30441653 –1093.809160106400
 9 56.79200000 33.17164090  –997.987688507726
10 56.79200000 45.89009316  –946.947360485552
11 56.79200000 60.70697190  –923.606989421236
12 56.79200000 74.99905776  –915.615473776683
13 56.79200000 84.49594080  –914.087289046441
14 56.79200000 87.48858990  –913.999146772176
15 56.79200000 87.71555229  –913.998722506935
16 56.79200000 87.71673597  –913.998722495553
17 56.79200000 87.71673600  –913.998722495553
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2.10 LINEAR REGRESSION

This section extends maximum likelihood estimation to a multiple regression analysis. 
As you will see, the previous concepts readily generalize to this analysis with virtu-
ally no modifications, because estimation still relies on the univariate normal curve. A 
single- predictor model is a useful starting point, because the log- likelihood function for 
the coefficients can be visualized in a three- dimensional graph. The simple regression 
model is

 ( )0 1 |i i i i i iY X E Y X= β + β + ε = + ε  (2.31)

 ( )( )2
1  | ,i i iY N E Y X ε~ σ  

where E(Y|X) is a predicted value (i.e., the expected value or mean of Y given a particular 
X score), the tilde means “distributed as,” N1 denotes the univariate normal distribution 
function (i.e., the probability distribution in Equation 2.3), and the conditional mean 
and residual variance inside the parentheses are the distribution’s two parameters. The 
bottom row of the expression is simply stating our usual assumption that outcome scores 
are normally distributed around a regression line with constant residual variation.

Switching gears to a different substantive context, I use the smoking data from 
the companion website to illustrate multiple regression. The data set includes several 
sociodemographic correlates of smoking intensity from a survey of N =	2,000 young 
adults (e.g., age, whether a parent smoked, gender, income). To facilitate graphing, I start 
with a simple regression model where the parental smoking indicator (0 =	parents did not 
smoke, 1 =	one or both parents smoked) predicts smoking intensity (higher scores reflect 
more cigarettes smoked per day):

 ( )0 1i i iINTENSITY PARSMOKE= β + β + ε  (2.32)

The intercept represents the expected smoking intensity score for a respondent whose 
parents did not smoke, and the slope is the group mean difference. The analysis example 
later in this section expands the model to include additional explanatory variables.

Probability Distribution and Log-Likelihood
Linear regression leverages the univariate normal distribution function from Equation 
2.3, and the only difference is that a predicted value and residual variance replace μ 
and σ2, respectively. Using generic notation, the probability distribution (normal curve 
equation) for the simple regression is as follows:

 ( ) ( )( )22
22

|1 1
| , , exp

22

i i i
i i

Y E Y X
f Y Xε

εε

 − σ = −
 σπσ  

β  (2.33)

To reiterate recurring notation, the function on the left side of the equation can be read 
as “the relative probability of a score given assumed values for the model parameters.” 
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Visually, “f of Y” is the height of the conditional normal curve that describes the spread 
of scores around a particular point on the regression line (e.g., the normal distribution 
of smoking intensity scores for participants who share the same value of the parental 
smoking indicator). The main component in the kernel is still a squared z-score, but that 
quantity now represents the standardized distance between a score and its predicted 
value. As before, the fraction to the left of the exponential function is a scaling term that 
ensures the area under the probability distribution sums or integrates to 1. Finally, note 
that explanatory variables function as fixed constants like the parameters. This feature 
will change in Chapter 3, where incomplete predictors appear as variables in a prob-
ability distribution.

As you know, maximum likelihood estimation reverses the probability distribu-
tion to get the likelihood of different combinations of population parameters given the 
observed data. Taking the natural logarithm of each observation’s likelihood and sum-
ming the transformed probabilities gives a log- likelihood function that summarizes the 
data’s evidence about the coefficients and residual variance.

 
 
 
 

( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

ε
ε= ε

−

ε ε
=

−

ε ε

  − β + β  σ = −  σ πσ   

= − π − σ − σ − β + β

′= − π − σ − σ − −

∑

∑

β

β β

 

2
0 12

22
1

1 22 2
0 1

1

12 2

1 1
, |data ln exp

22

1
ln 2 ln

2 2 2

1
ln 2 ln

2 2 2

N
i i

i

N

i i
i

Y X
LL

N N
Y X

N N
Y X Y X

 (2.34) 
 
 

The compact matrix expression in the bottom row stacks the N outcome scores into a 
vector Y, and it uses X to denote a corresponding matrix that contains predictor vari-
ables and a column of ones for the intercept.

With only two coefficients, we can visualize the log- likelihood surface of β0 and β1 
in three dimensions. Figure 2.13 is a contour plot conveying the perspective of a drone 
hovering over the peak of the log- likelihood surface, with smaller contours denoting 
higher elevation (and vice versa). The data’s support for the parameters increases as the 
contours get smaller, and the maximum likelihood estimates of β0 and β1 are located at 
the peak of the surface, shown as a black dot. The angle of the ellipses owes to the fact 
that the intercept and slope coefficients are negatively correlated (i.e., the data’s support 
for a larger mean difference requires concurrent support for lower comparison group 
average). Identifying the optimal parameters for the data is again analogous to a hiker 
climbing a mountain peak. Following the univariate example, we can derive an exact 
solution or use an iterative optimization approach such as Newton’s algorithm.

Maximum Likelihood Estimates and Standard Errors
As before, the process of deriving maximum likelihood estimates and standard 
errors requires the first and second derivatives of the log- likelihood function. Apply-
ing  dif ferential calculus rules to Equation 2.34 leads to the following first derivative 
expressions:
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X Y X X  (2.35)
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LL N − −
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ε

∂ ′= − σ + σ − −
∂σ

β βY X Y X  (2.36)

Setting these slope equations to 0 and solving for the unknown parameters at the peak 
of the log- likelihood surface gives the maximize likelihood estimates below.

 ( ) 1
OLS

ˆ ˆY− ′= =′β βX X X  (2.37)

 ( ) ( )2 ˆ1ˆ ˆ
Nε

′σ = − −β βY X Y X  (2.38)

Notice that the coefficients are identical to those of ordinary least squares, but the resid-
ual variance differs, because the sample size is not adjusted for the number of estimates 
in β̂. This matches the earlier result for the mean and variance.

From Section 2.6, you know that second derivatives quantify the curvature or 
steepness of the log- likelihood function near its peak (i.e., the rate at which the first-
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 FIGURE 2.13.  Contour plot that conveys the perspective of a drone hovering over the peak of 
the log- likelihood surface for a simple regression model, with smaller contours denoting higher 
elevation (and vice versa). The maximum likelihood estimates of β0 and β1 are located at the peak 
of surface (shown as a black dot).
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order slopes change across the range of parameter values). These second derivatives are 
obtained by applying differential calculus rules to Equations 2.35 and 2.36, and the Hes-
sian collects these equations in a matrix.

 
 ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 22 2

O 2 2 32 2 2

2
N

− −

ε ε

− − −

ε ε ε

 ′− σ − σ − 
=  

′ ′ − σ − σ − σ − −
 

′ ′ β
θ

β β β

X X X Y X
H

Y X X Y X Y X
 (2.39) 

Substituting the maximum likelihood estimates into the expression and multiplying 
HO(θ̂) by –1 gives the observed information matrix, then taking its inverse (the matrix 
analogue of a reciprocal) gives the variance– covariance matrix of the parameter esti-
mates. Equations 2.17 and 2.18 depict these steps. The parameter covariance matrix 
for the simple regression analysis is symmetric with three rows and columns, one per 
parameter.
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θS  (2.40) 
 

Finally, taking the square root of the diagonal elements gives the standard errors (e.g., 

1
ˆ 0.039SEβ =  =	0.20). To establish further linkages to ordinary least squares, the expres-

sion in the upper left block of Equation 2.39 is a 2 × 2 matrix that contains derivatives 
with respect to the two coefficients. Multiplying this submatrix by –1 and taking its 
inverse gives an expression that is identical to a parameter covariance matrix from ordi-
nary least squares regression.

Analysis Example
To illustrate maximum likelihood estimation for multiple regression, I expanded the 
previous analysis model to include age and income as predictors. I centered the addi-
tional variables at their grand means to maintain the intercept’s interpretation as the 
expected smoking intensity score for a respondent whose parents did not smoke.

 ( ) ( ) ( )0 1 2 2 3 3i i i i iINTENSITY PARSMOKE AGE INCOME= β + β + β − μ + β − μ + ε  (2.41)

Importantly, the smoking intensity distribution has substantial positive skewness and 
kurtosis, so I used robust (sandwich estimator) standard errors and the bootstrap to 
illustrate different corrective procedures. Analysis scripts are available on the compan-
ion website, including a custom R program for readers interested in coding Newton’s 
algorithm by hand.

Table 2.5 shows the maximum likelihood estimates, along with ordinary least 
squares results as a comparison. As expected, the two estimators produced identical 
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coefficients, but the maximum likelihood residual variance is very slightly smaller, 
because it does not subtract the four degrees of freedom spent estimating the coeffi-
cients. This slight difference aside, the estimates themselves have the same meaning. For 
example, the intercept (β̂0 =	9.09, SE =	.12) is the expected number of cigarettes smoked 
per day for a respondent whose parents didn’t smoke, and the parental smoking indi-
cator slope (β̂1 =	2.91, SE =	.19) is the mean difference, controlling for age and income. 
The corrective procedures induced relatively minor changes to the coefficients’ standard 
errors, but they had a dramatic impact on the standard error of the residual variance. As 
is often the case with a reasonably large sample size, sandwich estimator and bootstrap 
standard errors were effectively equivalent.

2.11 SIGNIFICANCE TESTS

Maximum likelihood estimation offers three significance testing options: the Wald test 
(Wald, 1943), likelihood ratio statistic (Wilks, 1938), and the score test or Lagrange 
multiplier (Rao, 1948). The latter is commonly referred to as the modification index 
in structural equation modeling applications (Saris, Satorra, & Sörbom, 1987; Sörbom, 
1989). I describe the first two approaches, because they are widely available in general- 
purpose software packages, and Buse (1982) provides a nice tutorial on this “trilogy of 
tests” for readers who are interested in additional details.

The Wald test and likelihood ratio statistic can evaluate the same hypotheses, but 
they do so in different ways. The Wald test compares the discrepancy between the esti-
mates and hypothesized parameter values (usually zeros) to sampling variation. The 
simplest incarnation of the test statistic is just a z-score or chi- square. In contrast, the 
likelihood ratio statistic compares log- likelihood values from two competing models, 
the simpler of which aligns with the null hypothesis. The two tests are equivalent in 
very large samples but can give markedly different answers in small to moderate samples 
(Buse, 1982; Fears, Benichou, & Gail, 1996; Greene, 2017; Pawitan, 2000). These differ-
ences are sometimes attributable to the fact that the Wald test inappropriately assumes 
that sampling distributions follow a normal curve, but discrepancies can arise for other 

TABLE 2.5. Maximum Likelihood and Ordinary Least Squares Estimates

Parameter

Maximum likelihood OLS

Est. SE RSE BSE Est. SE

β0  9.09 0.126 0.120 0.119  9.09 0.126

β1 (PARSMOKE)  2.91 0.187 0.186 0.183  2.91 0.187

β2 (AGE)  0.59 0.040 0.040 0.040  0.59 0.040

β3 (INCOME) –0.10 0.027 0.032 0.032 –0.10 0.027

σε
2 17.15 0.542 1.673 1.685 17.18 —

R2  0.19 0.016 0.026 0.025  0.19 —

Note. RSE, robust standard errors; BSE, bootstrap standard errors.
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reasons that are more difficult to predict. Statistical issues aside, the likelihood ratio test 
is somewhat less convenient to implement, because it requires two analyses, but this is 
not a compelling disadvantage.

Wald Test
The simplest incarnation of the Wald test is the familiar z-statistic that compares the 
difference between an estimate and hypothesized parameter value (e.g., θ0 =	0) to the 
estimate’s standard error.

 
θ

θ − θ
=

ˆ

0
ˆ

z
SE

 (2.42)

Leveraging the large- sample normality of maximum likelihood estimates, a standard 
normal distribution generates a probability value for the test, and symmetrical confi-
dence interval limits are computed by multiplying the standard error by the appropriate 
z critical value, then adding and subtracting that product (i.e., the margin of error or 
half-width) to the estimate.

 θ= θ ± ×CV ˆC ˆI z SE  (2.43)

The z critical values for different alpha levels are available in textbooks and online (e.g., 
zCV =	±1.96 for α =	.05).

Squaring the z-score gives an alternative expression for the Wald statistic that 
instead follows a chi- square distribution with a single degree of freedom.
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ˆ
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 (2.44)

The chi- square formulation readily generalizes to multiple parameters:

 ( ) ( )W 0ˆ
1

0
ˆ ˆˆ

Q
Q QT −

θ
′= − −θ θ S θ θ  (2.45)

where θ̂Q is a vector of Q estimates, θ0 is the corresponding vector of hypothesized 
values (typically zeros), and ˆ

ˆ
Qθ

S  is a variance– covariance matrix that contains Q rows 
and columns from full parameter covariance matrix (or its robustified counterpart). 
The numerical value of TW is the sum of squared standardized differences between the 
estimates and their hypothesized values. If the null hypothesis is true, the test statis-
tic follows a central chi- square distribution with Q degrees of freedom, and statistical 
significance implies that one or more of the estimates in θ̂Q are different from their 
hypothesized values.

Likelihood Ratio Test
The likelihood ratio statistic evaluates the relative fit of two nested models. Nested 
models can take a variety of forms, but a common application compares the substantive 
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analysis to a more restrictive version of the model that fixes a subset of parameters to 0. 
Returning to the earlier regression analysis, we could use the likelihood ratio statistic 
to evaluate the null hypothesis that R2 =	0 by comparing the fit of the analysis model 
from Equation 2.41 to that of an empty model that constrains the slope coefficients to 
0. A slightly different application of the likelihood ratio test occurs in structural equa-
tion modeling analyses in which a researcher compares the fit of a saturated model 
(i.e., a model that places no restrictions on the mean vector and covariance matrix) to 
that of a more parsimonious analysis model that imposes a structure on the data (e.g., a 
confirmatory factor analysis model). In either scenario, the simpler model with Q fewer 
parameters aligns with the null hypothesis, so I denote the restricted model’s param-
eters as θ0 and the full model’s parameters as θ.

The likelihood ratio statistic is

 ( ) ( )( )= − −θ θLR 02 |data |dataˆ ˆT LL LL  (2.46)

where LL(θ̂0|data) is the sample log- likelihood value for the restricted model (e.g., an 
empty regression model with only an intercept), and LL(θ̂|data) is the log- likelihood 
for the more complex model (e.g., the full regression model). The more complex model 
with additional parameters will always achieve better fit and a higher log- likelihood, 
but that improvement should be very small when the null hypothesis is true. If the two 
models are equivalent in the population, the likelihood ratio statistic follows a central 
chi- square distribution with Q degrees of freedom, which in this case is the difference 
between the number of parameters in the two models. A significant test statistic indi-
cates that the data provide more support for the full model than the restricted model 
(e.g., one or more parameters are significantly different from zero).

Robust Test Statistics
As discussed in Section 2.8, non- normal data may or may not compromise point esti-
mates, but they certainly distort standard errors. The same is true for significance tests, 
as the Wald and likelihood ratio statistics no longer follow the optimal chi- square dis-
tribution. The Wald test is easily robustified by substituting a sandwich estimator cova-
riance matrix into Equation 2.45 (or a robust standard error into Equation 2.42). The 
likelihood ratio statistic can be rescaled to more closely approximate the correct chi- 
square distribution (Satorra & Bentler, 1988; Satorra & Bentler, 1994; Yuan & Bentler, 
2000), or a p-value can be obtained by referencing the biased test statistic against a boot-
strap sampling distribution that honors the distribution of the data (Beran & Srivastava, 
1985; Bollen & Stine, 1992; Enders, 2002; Savalei & Yuan, 2009). I describe these two 
approaches below and illustrate their application in one of the later analysis examples.

Readers familiar with structural equation models are undoubtedly familiar with 
the rescaled likelihood ratio statistic, which is commonly known as the Satorra– Bentler 
chi- square (Satorra & Bentler, 1988; Satorra & Bentler, 1994). The general procedure for 
comparing two nested models involves dividing the likelihood ratio statistic by a con-
stant scaling term that largely depends on the kurtosis of the data (Satorra & Bentler, 
2001; Yuan et al., 2005). The rescaled test statistic is

  Maximum Likelihood Estimation 81



 = LR
SB

LR

T
T

c
 (2.47)

 
 

−
=

−
0 0 F F

LR
0 F

P c P c
c

P P
 

where TLR is the likelihood ratio statistic from Equation 2.46, and cLR is a scaling con-
stant that combines the number of parameters in the full and restricted models, PF and 
P0, respectively, and model- specific scaling terms, cF and c0.

The scaling term can be understood by revisiting the sandwich estimator cova-
riance matrix in Equation 2.24. As explained previously, the “bread × meat” product 
yields a matrix with diagonal elements that reflect the relative magnitude of two infor-
mation matrices, one of which is sensitive to outlier scores. When the data are normal, 
the two matrices are equivalent and cancel out when multiplying one by the inverse of 
the other (the resulting product is an inert identity matrix). In contrast, when the data 
are non- normal, the resulting product contains fractional diagonal terms that can be 
smaller or larger than 1, depending on the kurtosis of the data. Multiplying this matrix 
by the rightmost piece of “bread” inflates or deflates elements in parameter covariance 
matrix accordingly.

The rescaling terms for the likelihood ratio test also leverage discrepancies between 
the two information matrices. In the simplest possible univariate application (e.g., the 
analysis from Section 2.8), the scaling term is a fraction that compares a single diago-
nal value from each information matrix (Yuan et al., 2005). More generally, cF and c0 
pool the elements of the “bread × meat” product into a single scalar value that  rescales 
the test statistic to have the same expected value or mean as its optitmal central chi- 
square distribution (Satorra & Bentler, 1988, 1994, 2001). As such, referencing TSB to 
a chi- square distribution with Q degrees of freedom gives an approximate p-value, 
and a significant test statistic indicates that the data provide more support for the full 
model than the restricted model (e.g., one or more parameters are significantly different 
from 0).

A second option for getting a robust significance test is to use the original TLR from 
Equation 2.46 but reference the test statistic against a simulation- based bootstrap sam-
pling distribution that honors the data’s shape. This is essentially the opposite tack of 
rescaling, which fixes up the test statistic and leaves the theoretical sampling distribu-
tion intact. As explained in Section 2.8, the bootstrap procedure treats the observed 
data as a surrogate for the population and draws many samples of size N with replace-
ment. Fitting the analysis model to each data set produces a collection of estimates 
that form empirical sampling distributions, the standard deviations of which are robust 
standard errors. A slight modification is needed to apply the bootstrap to test statistics. 
As you know, a probability value reflects the likelihood that the observed test statistic 
originated from a hypothetical population where the null hypothesis is exactly true. To 
achieve this interpretation from the bootstrap, you need to first transform the observed 
data to match the null hypothesis. Returning to the multiple regression model from 
Equation 2.41, a null hypothesis that R2 =	0 implies that all regression slopes equal 0. 
The estimated slopes will never be exactly 0, yet the sample data must be exactly consis-
tent with this condition for the bootstrap to work properly.
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Beran and Srivastava (1985) and Bollen and Stine (1992) modified the bootstrap 
procedure by first applying an algebraic transformation that aligns the mean and covari-
ance structure of the data to the null hypothesis (the procedure is sometimes referred 
to as the model-based bootstrap). Importantly, this transformation does not modify dis-
tribution shapes, so drawing bootstrap samples from the rescaled data gives an empiri-
cal sampling distribution that reflects the natural variation of the test statistic with 
non- normal data. A robust p-value is then obtained by computing the proportion of 
bootstrap samples that give a test statistic larger than TLR from the original analysis. The 
transformation expression is

 ( ) .5 .5
0 0

ˆ ˆˆ ˆi i
− −′ ′= − +μ S S μY Y  (2.48)

where Yi is the transformed data for observation i, Yi is the corresponding vector of 
observed scores, μ̂ and Ŝ are the mean vector and covariance matrix of the sample data, 
and μ̂0 and Ŝ0 are model- implied mean vector and covariance matrix from the restricted 
model (i.e., the model that aligns with the null hypothesis). I use Y as a generic symbol 
for the analysis variables, but this vector could include predictors and outcomes. The 
equation essentially applies two transformations: The (Yi – μ̂)′Ŝ–.5 part of the expres-
sion “erases” the mean and the covariance structure from the data by converting the 
variables to uncorrelated z-scores, and Ŝ0

–.5 + μ̂0′ rescales the z-scores to match the asso-
ciations implied by the null hypothesis. Returning to the math achievement regression 
model from Equation 2.41, a null hypothesis that R2 =	0 would induce a transformation 
where explanatory variables are correlated with each other but mutually uncorrelated 
with the outcome. Applying the bootstrap procedure to the rescaled data and collecting 
the B test statistics creates an empirical sampling distribution, and the robust probabil-
ity value is then the proportion of these statistics that exceed TLR, the likelihood ratio 
statistic from the raw data.

Analysis Example
Returning to the multiple regression model from Equation 2.41, I use the Wald test and 
likelihood ratio statistic to evaluate the null hypothesis that R2 =	0. Both tests func-
tion like the omnibus F test from ordinary least squares in this context. To begin, the 
Wald test standardizes discrepancies between the estimates and null values against the 
parameter covariance matrix. The full covariance matrix is a 5 × 5 matrix, but the test 
uses only the elements related to the slope coefficients. The composition of the test sta-
tistic for this example is as follows:

 
 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

1 1 2 1 31 1

W 2 2 1 2 2 3 2

3 33 1 3 2 3

ˆ ˆ ˆ

v

var cov , cov ,0 0

0 c ˆ

ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

ov , var cov , 0

0 0co , cov ˆ, var

T

−
 ′ β β β β β   β β     = β − β β β β β β −           β β β β β β β    

 (2.49) 
 

The diagonal elements of the middle matrix are the sampling variances (i.e., squared 
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standard errors), and the off- diagonal elements capture the degree to which the esti-
mates covary across repeated samples. Substituting the appropriate estimates into the 
previous expression gives TW =	481.19, the value of which represents the sum of squared 
standardized differences from zero. Referencing the test statistic to a chi- square dis-
tribution with Q =	3 degrees of freedom gives p < .001; consistent with an analogous F 
test, we can conclude that at least one of the slopes is nonzero. The sandwich estimator 
(robust) test statistic was markedly lower at TW =	423.15 but gave the same conclusion.

The likelihood ratio statistic evaluates the same hypothesis but requires a nested 
or restricted model that aligns with the null. This secondary model is an empty regres-
sion that fixes the three slope coefficients to zero. With complete data, you can get the 
restricted model log- likelihood by constraining the slope coefficients to zero during 
estimation or by excluding the explanatory variables from the analysis. Although it 
makes no difference here, explicitly constraining the slopes to zero as follows is prefer-
able, because it generalizes to missing data analyses.

 ( )( ) ( ) ( )0 2 30 0 0i i i i iINTENSITY PARSMOKE AGE INCOME= β + + − μ + − μ + ε  (2.50)

Fitting the two models and substituting the resulting log- likelihood values into Equa-
tion 2.46 gives the following test statistic:

   ( ) ( )( ) ( ) ( )( )LR 02 |data |data 2 5,895.145 5, 0ˆ 679.545 431.ˆ 2T LL LL= − − = − − − =θ θ  (2.51)

As you can see, fixing the slopes to zero substantially decreased the log- likelihood from 
–5,679.545 to –5,895.145, indicating that the restricted model’s parameters are located 
at a much lower vertical elevation on the log- likelihood surface. Referencing the test 
statistic to a chi- square distribution with Q =	3 degrees of freedom returns a probability 
value of p < .001, which, again, indicates that one or more of the slopes’ coefficients are 
nonzero. The corresponding rescaled test statistic from Equation 2.47 was markedly 
lower at TSB =	173.97 (cLR =	2.48) but gave the same conclusion. Although TW and TLR 
produced the same substantive conclusion, their numerical values aren’t particularly 
well calibrated. This is not unusual, as the tests often require a much larger sample size 
to achieve equivalence.

2.12 MULTIVARIATE NORMAL DATA

The multivariate normal distribution plays an important role throughout the book, and 
it appears prominently in Chapter 3, where it provides a flexible framework for miss-
ing data handling. To set the stage for missing data, this section uses the distribution 
as a backdrop for estimating a mean vector and variance– covariance matrix. As you 
will see, the concepts we’ve already established readily generalize to multivariate data 
with virtually no modifications (although some of the equations are messier). I use the 
employee data from the companion website to provide a substantive context. The data 
set includes several workplace- related variables (e.g., work satisfaction, turnover inten-
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tion, employee– supervisor relationship quality) for a sample of N =	 630 employees. 
The illustration uses a 7-point work satisfaction rating (1 =	extremely dissatisfied to 7 
=	extremely satisfied) and two composite scores that measure employee empowerment 
and a construct known as leader– member exchange scale (the quality of an employee’s 
relationship with his or her supervisor). I treat work satisfaction as a normally distrib-
uted variable, because it has a sufficient number of response options and a symmetric 
distribution (Rhemtulla et al., 2012). The Appendix gives a description of the data set 
and variable definitions.

Probability Distribution and Log-Likelihood
To tie the multivariate normal distribution back to earlier material, it is useful to cast 
the analysis as three empty regression models. Using generic notation, the models are 
as follows:

 
 

1 1

2 2

3 3

i i

i i i

i i

WORKSAT
EMPOWER

LMX

μ ε     
     = = μ + ε = +     
     μ ε     

μ εY  (2.52) 

 ( )3 ~  ,i NY μ S  

The bottom equation is shorthand notation to reference data that follow a multivariate 
normal distribution; N3 denotes a three- dimensional normal distribution, and the first 
and second terms in parentheses are the mean vector and variance– covariance matrix 
(the multivariate distribution’s parameters).

The multivariate normal distribution function generalizes the normal curve to mul-
tiple variables. In addition to a mean and variance for each variable, the distribution also 
incorporates covariances among the variables (or alternatively, correlated residuals). 
To illustrate, Figure 2.14 shows an idealized bivariate normal distribution for the pain 
interference and depression composite variables. The distribution retains its familiar 
shape and looks like a bell- shaped surface in three- dimensional space. The probability 
distribution function that describes the shape of the surface has the same basic struc-
ture as its univariate sibling in Equation 2.3, with vectors and matrices replacing scalar 
quantities.

 ( ) ( )( ) ( ) ( ).5 .5 11
| , 2 exp

2
V

i i if − × − − ′= π − − − 
 

μ S S μ S μY Y Y  (2.53)

The column vector Yi now contains V observations for a participant i, μ is the corre-
sponding vector of population means, and S is a variance– covariance matrix of the V 
variables. As before, the function on the left side of the expression can be read as “the 
relative probability of the V observations given assumed values for the model param-
eters.” Visually, the equation describes the height of the surface in Figure 2.14 at the 
intersection of score values along the horizontal and depth axes. The term in the expo-
nential function, (Yi – μ)′ S–1(Yi – μ), is a key component that equals the sum of squared 
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standardized differences between the scores and the distribution’s center (a quantity 
known as Mahalanobis distance). Finally, the terms to the left of the exponential func-
tion scale the distribution so the area under the surface sums or integrates to 1.

As you know, a probability distribution treats scores as variable and the parameters 
as known constants. To illustrate the distribution function’s output, assume that the 
true population parameters are as follows (these happen to be the maximum likelihood 
estimates for the employee empowerment and leader– member exchange variables):

 
   

= =   
   

μ S
28.61 20.38 5.37

    
9.59 5.37 9.10

 (2.54)

The contour plot in Figure 2.15 shows the perspective of a drone hovering over the 
peak of the bivariate normal distribution in Figure 2.14, with smaller contours denoting 
higher elevation and larger relative probabilities (and vice versa). The overhead perspec-
tive better reveals the positive correlation between pain interference and depression. 
The black diamond corresponds to interference and depression scores of Y1 =	(32.00, 
13.18)′, and the black circle corresponds to Y2 =	(33.25, 9)′. Substituting everything into 
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 FIGURE 2.14.  An idealized bivariate normal probability distribution for the employee empow-
erment and leader– member exchange variables.

86 APPLIED MISSING DATA ANALYSIS 



Equation 2.53 returns relative probability values of f(Y1|μ, S) =	0.006 and f(Y2|μ, S) =	
0.006. The two pairs of scores have the same relative probability (i.e., are located at the 
same vertical elevation), despite the fact that the straight line connecting Y1 to the center 
of the distribution is noticeably shorter than the line connecting Y2 to the peak. This 
result happens, because the positive correlation rotates the contours in such a way that 
elevation drops rapidly directly above and below the distribution’s peak. This feature is 
also apparent in Equation 2.53, where scaling the squared deviation scores relative to 
the variance– covariance matrix standardizes the distances in a way that accounts for 
the correlations among the variables.

Following established concepts, estimation “reverses” the probability distribution’s 
arguments to get the likelihood of different combinations of population parameters 
given the observed data. Taking the natural logarithm gives the log- likelihood contribu-
tion for a single observation:

 ( ) ( ) ( ) ( )11 1
, | data ln 2 ln

2 2 2i i i
V

LL −′= − π − − − −μ S S μ S μY Y  (2.55)
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 FIGURE 2.15.  The contour plot shows the perspective of a drone hovering over the peak of 
the bivariate normal distribution in Figure 2.14, with smaller contours denoting higher eleva-
tion and larger relative probabilities (and vice versa). The overhead perspective better reveals the 
positive correlation between pain interference and depression. The black circle and diamond are 
two pairs of scores located at the same vertical elevation.
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and summing across the N observations gives the sample log- likelihood.

 ( ) ( ) ( ) ( )1

1

1
, | data ln 2 ln

2 2 2

N

i i
i

V N
LL N −

=

′= − π − − − −∑μ S S μ S μY Y  (2.56)

Numerically, the log- likelihood is a large negative value that summarizes the data’s evi-
dence for a specific combination of parameter values in μ and S, with higher or less 
negative numbers reflecting better fit (and vice versa). Visually, the log- likelihood cor-
responds to the height of a multidimensional surface at specific values of μ and S. As 
always, the goal of estimation is to identify the parameter values that maximize fit to 
the observed data (or equivalently, minimize the sum of the squared z-scores in the 
rightmost term).

Maximum Likelihood Estimates and Standard Errors
Consistent with the previous examples, we can derive an exact solution for the mean 
vector and covariance matrix or use an iterative optimization approach such as New-
ton’s algorithm. An exact solution requires first and second derivatives of the log- 
likelihood function. The underlying logic is the same as before— solve for the param-
eters after setting the derivative expressions to 0—but getting the derivative expres-
sions is more complex and requires matrix calculus (Magnus & Neudecker, 1999). 
Although most of the equations are not intuitive, I include them as a resource for 
interested readers. Equations aside, you can still follow the gist of estimation, because 
all quantities retain their previous meaning (e.g., a first derivative gives the slope at a 
particular point on the log- likelihood surface; a second derivative captures curvature 
or steepness at the peak).

The first derivatives with respect to μ and S are as follows:

 1 1

1

N

i
i

LL
N − −

=

∂
= − +

∂ ∑S μ S
μ

Y  (2.57)

 
 ( )( )1 1 1

1

1
2

N

i i
i

LL − − −

=

∂  ′= − − − − 
 ∂ ∑ S S μ μ S

S
Y Y  (2.58)

Setting these equations to 0 and solving for the parameters gives the following analytic 
solutions for the maximum likelihood estimates:

 
1

ˆ 1 N

i
iN =

= ∑μ Y  (2.59)

 
 ( )( )

1

ˆ ˆ ˆ1 N

i i
iN =

′= − −∑S μ μY Y  (2.60)

The analytic solutions highlight a recurring theme, which is that maximum likelihood 
estimates of variances and covariances do not adjust for the degrees of freedom spent 
estimating the means; as such, variance– covariance estimates are biased in small sam-
ples but approach their true population values as sample size increases (i.e., the esti-
mates are said to be consistent).
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Second derivatives quantify the curvature or steepness of the log- likelihood func-
tion near its peak (i.e., the rate at which the first-order slopes change across the range of 
parameter values). Second derivatives are obtained by applying matrix calculus rules to 
Equations 2.57 and 2.58, and the Hessian collects these equations in a symmetric matrix 
with P rows and columns, where P is the number of unique parameters in μ and S.

 
 ( )

2 2

2

O 2 2

2

LL LL

LL LL

 ∂ ∂
 

∂ ∂∂ =  ∂ ∂  ∂ ∂ ∂ 

μ Sμ
θ

S μ S

H  (2.61) 

The second derivative equations below are the building blocks for the observed infor-
mation matrix, and analogous expressions for the expected information are available 
in the literature (Savalei, 2010; Savalei & Bentler, 2009; Yuan & Hayashi, 2006) and in 
Chapter 3.
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The ⊗ symbol is a Kronecker product that multiplies one matrix by each element of 
another matrix, and DV is the so- called “duplication matrix” (Magnus & Neudecker, 
1999). Each covariance term appears twice in the first derivative matrix from Equation 
2.58 but only once in the Hessian (and similarly, only once in the parameter covariance 
matrix). The duplication matrix combines these redundant terms into a single value. 
Substituting the maximum likelihood estimates into the derivative expressions, multi-
plying HO(θ̂) by –1, then taking its inverse gives the variance– covariance matrix of the 
estimates.

Analysis Example
Returning to the empty regression models in Equation 2.52, I use work satisfaction, 
employee empowerment, and leader– member exchange scales to illustrate maximum 
likelihood estimation. Analysis scripts are available on the companion website, includ-
ing a custom R program for readers interested in coding Newton’s algorithm by hand. 
Table 2.6 gives the maximum likelihood estimates of the means, standard deviations, 
variances and covariances, and correlations (in bold typeface above the diagonal). I 
computed the standard deviations and correlations by transforming the maximum like-
lihood estimates of the variances and covariances (e.g., a correlation is a covariance 
divided by square root of the product of two variances). As a comparison, Table 2.6 also 
gives results from the usual unbiased estimator of the variance– covariance matrix. The 
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maximum likelihood estimates of these parameters are consistently lower (albeit by a 
trivial amount), because the estimator from Equation 2.60 has N rather than N – 1 in 
the denominator.

2.13 CATEGORICAL OUTCOMES: 
LOGISTIC AND PROBIT REGRESSION

Looking ahead to missing data analyses, we now have flexible estimators that accom-
modate mixtures of categorical and continuous incomplete variables. To set the stage for 
later examples, I illustrate complete- data maximum likelihood estimation for a binary 
outcome variable. Continuing with the employee data set, I use a dichotomous measure 
of turnover intention that equals 0 if an employee has no plan to leave his or her position 
and 1 if the employee has the intention of quitting. The bar graph in Figure 2.16 shows 
the distribution of the discrete responses.

Latent Response Variable Formulation
Logit and probit regression envision binary scores originating from an underlying latent 
response variable that represents one’s underlying proclivity or propensity to endorse 
the highest category (Agresti, 2012; Johnson & Albert, 1999). Applied to the turnover 
intention measure, this latent variable represents an unobserved, continuous dimension 
of quitting intentions. To illustrate, Figure 2.17 shows the latent variable distribution 
for the bar graph in Figure 2.16. The vertical line represents the precise cutoff point or 
threshold in the latent distribution where discrete scores switch from 0 to 1 (or more 
generally, from the lowest code to the highest code). The areas under the curve above and 

TABLE 2.6. Maximum Likelihood Descriptive Statistics
Variable 1 2 3

Maximum likelihood

1. WORKSAT 1.58   .29  .42
2. EMPOWER 1.64 20.38  .39
3. LMX 1.61  5.37 9.10
Means 3.99 28.61 9.59
SD 1.26  4.52 3.02

Unbiased sample estimates

1. WORKSAT 1.59   .29  .42
2. EMPOWER 1.64 20.42  .39
3. LMX 1.61  5.37 9.11
Means 3.99 28.61 9.59
SD 1.26  4.52 3.02

Note. Bold typeface denotes correlations.
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below this threshold correspond to the category proportions in the bar chart: 69% of the 
area under the curve falls below the threshold, and 31% falls above in the shaded region. 
Using generic notation, the link between the latent scores and categorical responses is

*

*

0 if 

1 if 
i

i
i

Y
Y

Y

 ≤ τ= 
> τ

(2.63)

where Yi is the binary outcome for individual i, Yi
* is the corresponding latent response 

score, and τ is the threshold parameter (the vertical line in Figure 2.17). Fixing the latent 
response variable’s mean or its threshold parameter to 0 provides a necessary identifica-
tion constraint, and I always adopt the latter strategy.

Adding an explanatory variable to the latent response model is a relatively small 
step forward. To illustrate, consider a simple regression with leader– member exchange 
(employee– supervisor relationship quality) predicting turnover intention, the latent 
variable model for which is as follows:

TURNOVERi
* = β0 + β1(LMXi) + ϵi (2.64)

The key difference between logistic and probit regression is the distribution of the resid-
ual term—the probit model defines ϵi as a standard normal variable, whereas logis-
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 FIGURE 2.16.  Bar graph of the dichotomous measure of turnover intention. TURNOVER =	0 
if an employee has no plan to leave his or her position, and TURNOVER =	1 if the employee has 
intentions of quitting.
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tic regression defines the residual as a standard logistic variable. To illustrate a probit 
regression model, Figure 2.18 shows the latent variable distributions at three values of 
the explanatory variable, with the area above the threshold parameter (the predicted 
probabilities) shaded in gray. The black dots represent predicted values, and the contour 
rings convey the perspective of a drone hovering over the peak of a bivariate normal dis-
tribution, with smaller contours denoting higher elevation (and vice versa). The graph 
for a logistic regression is similar, but standard logistic distributions have thicker tails 
than the normal curves in the figure.

Going forward, I use the following notation for probit regression models to empha-
size the normally distributed latent response variable, which later functions as an 
incomplete variable to be imputed:

*
0 1i i iY X= β + β + ε (2.65)

( )1 ~  0,1 i Nε

The second term in the normal distribution function indicates that the latent response 
variable’s variance is fixed at 1 to provide a metric. I write the logistic model in its more 
usual format as

TURNOVER = 0 TURNOVER = 1

–4 –3 –2 –1 0 1 2 3 4

Latent Response Variable

R
el

at
iv

e 
Pr

ob
ab

ili
ty

 FIGURE 2.17.  Latent response distribution for a binary variable. The vertical line at 0 is a 
threshold parameter τ that divides the latent distribution into two regions. Employees with no 
quitting intentions have latent scores below the threshold, and employees who intend to quit 
have scores above the threshold. The area under the shaded region of the curve is the probability 
of quitting (the proportion of 1’s in the data).
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( )
( ) 0 1

Pr 1
ln

1 Pr 1
i

i
i

Y
X

Y

 =
= β + β  − = 

(2.66)

where the term on the left side of the equation is the log odds or logit. The logistic model 
also has a fixed variance, which I omit from the expression.

Both modeling frameworks provide a conversion to the probability metric, albeit 
using different functions. The predicted probability of endorsing the highest category 
(e.g., the probability of quitting) from the probit model is

( ) ( ) ( )2Pr 1| ,data 1 1i
i i i iY

ε

 τ −
= = −Φ = −Φ − = Φ − = π  σ 

ββ
β β ββ β β

X
X X (2.67)

where Xi is the predictor vector for individual i (including a column of 1’s for the inter-
cept), ββ contains the coefficients, Xiββ is the predicted latent response, and Φ(·) is the 
cumulative distribution function of the standard normal curve. The subtraction inside 
the parentheses expresses the threshold as a z-score (recall that τ =	0 and σε

2 =	1), and 
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 FIGURE 2.18.  Latent response distribution for a binary variable. The vertical line at 0 is a 
threshold parameter τ that divides the latent distribution into two regions. Employees with no 
quitting intentions have latent scores below the threshold, and employees who intend to quit 
have scores above the threshold. The area under the shaded region of the curve is the probability 
of quitting (the proportion of 1’s in the data).
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the function returns the area below this value in a standard normal curve. Subtracting 
that result from 1 gives the area above the threshold (e.g., the shaded regions of the nor-
mal curves in Figure 2.18). Similarly, the logit link function translates predicted latent 
response scores to the probability metric as follows:

 
( )
( )

exp
Pr( 1| ,data)

1 exp
i

i i
i

Y = = = π
+

β
β

β
X

X
 (2.68)

Probability Distribution and Log-Likelihood
Probit regression is appealing, because it leverages a normal distribution for the under-
lying response variable. In later chapters, I adopt a likelihood expression that features 
the latent response scores in the normal curve expression from Equation 2.3, but for 
now, I use an alternative equation that represents an individual’s likelihood contribution 
as a predicted probability (area under the standard normal distribution).

 ( ) ( )( ) ( )1 (1 )|data ( ) 1 1i ii i
Y YY Y

i i i i iL
− −= Φ − × −Φ − = π − πβ β βX X  (2.69)

In the context of the employee turnover example, the likelihood features the product of 
the predicted probability of quitting (left term) and not quitting (right term). The scores 
in the exponents act like on–off switches that activate the left term (the predicted prob-
ability that Y =	1) if Y =	1 and trigger the right term (the predicted probability that Y =	
0) if Y =	0. Taking the natural logarithm and summing across the N cases gives the fol-
lowing sample log- likelihood expression:

 ( ) ( )( ) ( ) ( )( )( )
1

|data ln 1 ln 1
N

i i i i
i

LL Y Y
=

= × Φ − + − × −Φ −∑β β βX X  (2.70)

Numerically, the log- likelihood is a large negative number that equals the sum of log-
arithmically transformed probability values. Conceptually, this value represents the 
data’s support for a particular combination of population regression coefficients in β.

The log- likelihood for logistic regression has the same form as Equation 2.70 but 
uses the Bernoulli distribution probability distribution from Equation 2.1. Reversing 
the probability distribution’s arguments by taking data values as given and varying the 
parameters gives the likelihood expression for a single observation.

 ( ) ( )
( )

( )
( ) ( )( )

1
1exp exp

|data 1 1
1 exp 1 exp

i i

ii

Y Y
Yi i Y

i i i
i i

L
−

−   
= × − = π − π      + +   

β β
β

β β
X X

X X
 (2.71)

Consistent with Equation 2.70, the likelihood features the product of the predicted 
probability of quitting (left term) and not quitting (right term), and the scores in the 
exponent activate the probability that corresponds to one’s binary response. Taking 
the natural logarithm and summing across the N cases gives the following sample log- 
likelihood expression, which again represents the data’s support for a particular combi-
nation of regression parameters:

94 APPLIED MISSING DATA ANALYSIS 



 ( ) ( )
( ) ( ) ( )1

exp 1
|data ln 1 ln

1 exp 1 exp

N
i

i i
i ii

LL Y Y
=

    
 = × + − ×       + +    

∑
β

β
β β

X

X X
 (2.72)

Unlike the other models in this chapter, there is no analytic solution for the probit 
and logistic regression coefficients, and iterative optimizers such as Newton’s algorithm 
are a must. Iterative optimization works the same as it did with normally distributed 
data, so I point readers to the literature for additional technical details (Agresti, 2012; 
Greene, 2017). Putting aside the technicalities, the process of computing standard errors 
follows the same procedure described earlier in the chapter; manipulating the matrix of 
second derivatives that quantifies the curvature of the log- likelihood function gives the 
variance– covariance matrix of the estimates, the diagonal of which contains squared 
standard errors. Similarly, the significance testing options described in Section 2.11 are 
no different with categorical variable models.

Analysis Example
Expanding on the employee turnover example, I used maximum likelihood estimation 
to fit probit and logistic regression models that use leader– member exchange, employee 
empowerment, and a male dummy code (0 =	female, 1 =	male) to predict a binary mea-
sure of turnover intention (TURNOVER =	0 if an employee has no plan to leave his or her 
position, and TURNOVER =	1 if the employee has intentions of quitting).

 ( ) ( ) ( )*
0 1 2 3i i i i iTURNOVER LMX EMPOWER MALE= β + β + β + β + ε  (2.73)
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The probit model’s residual variance is fixed at 1 for identification, and the model addi-
tionally incorporates a fixed threshold parameter that divides the latent response vari-
able distribution into two segments. The logistic regression can also be viewed as a latent 
response model, but it is typical to write the equation without a residual. Note that I 
use β’s to represent focal model parameters, but the estimated coefficients will not be 
the same (logit coefficients are approximately 1.7 times larger than probit coefficients; 
Birnbaum, 1968). As always, analysis scripts are available on the companion website.

Table 2.7 shows the maximum likelihood analysis results for both models. Start-
ing with the probit regression results, the Wald test of the full model was statistically 
significant, TW(3) =	20.00, p < .001, meaning that the estimates are at odds with the null 
hypothesis that all three population slopes equal zero. Each slope coefficient reflects the 
expected z-score change in the latent response variable for a one unit increase in the pre-
dictor, controlling for other regressors. For example, the leader– member exchange coef-
ficient indicates that a one-unit increase in relationship quality is expected to decrease 
the latent proclivity to quit by 0.06 z-score units (β̂1 =	–0.06, SE =	.02), holding other 
predictors constant.

Turning to the logistic regression results, the Wald test of the full model was again 
statistically significant, and the test statistic’s numerical value was comparable to that 
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of the probit model, TW(3) =	19.35, p < .001. Each slope coefficient now reflects the 
expected change in the log odds of quitting for a one-unit increase in the predictor, 
holding all other covariates constant. For example, the leader– member exchange slope 
indicates that a one-unit increase in relationship quality decreases the log odds of quit-
ting by .10 (β̂1 =	–0.10, SE =	.04), controlling for employee empowerment and gender. 
Notice that the logistic coefficients are approximately 1.7 times larger than the probit 
slopes, as expected (Birnbaum, 1968). Exponentiating each slope gives an odds ratio 
that reflects the multiplicative change in the odds (the probability ratio on the left side 
of Equation 2.66) for a one-unit increase in a predictor (e.g., a one-point increase on the 
leader– member exchange scale multiplies the odds of quitting by 0.90).

The analysis results highlight that probit and logistic models are effectively equiva-
lent and almost always lead to the same conclusions. Some researchers favor the logistic 
framework, because it yields odds ratios, but there is otherwise little reason to prefer 
one approach to the other. As you will see, probit regression plays a more central role 
with Bayesian estimation and multiple imputation.

2.14 SUMMARY AND RECOMMENDED READINGS

Maximum likelihood is the go-to estimator for many common statistical models, and it 
is one of the three major pillars of this book. As its name implies, the estimator identi-
fies the population parameters that are most likely responsible for a particular sample of 
data. Much of this chapter has unpacked this definition in the context of linear regres-
sion models and multivariate analyses based on the normal distribution, and the last 
section has outlined logistic and probit models for categorical outcomes. Having estab-

TABLE 2.7. Probit and Logistic Regression Estimates
Parameter Est. RSE z p OR

Probit regression

β0  0.80 0.35  2.25 .03 —
β1 (LMX) –0.06 0.02 –2.99 .00 —

β2 (EMPOWER) –0.03 0.01 –1.83 .07 —
β3 (MALE) –0.03 0.11 –0.30 .77 —

R2   .06  .03  2.36 .02 —

Logistic regression

β0  1.37 0.60  2.30 .02 —
β1 (LMX) –0.10 0.04 –2.96 .00 0.90

β2 (EMPOWER) –0.04 0.02 –1.81 .07 0.96
β3 (MALE) –0.06 0.18 –0.31 .75 0.95

R2   .05  .02  2.30 .02 —

Note. RSE, robust standard error; OR, odds ratio.
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lished all the major details behind estimation and inference, Chapter 3 applies maxi-
mum likelihood to missing data problems. As you will see, everything from this chapter 
carries over to missing data applications, where the goal remains to identify parameter 
values that maximize fit to the data—the only difference is that some participants have 
more of it than others. Finally, I recommend the following articles for readers who want 
additional details on topics from this chapter:

Buse, A. (1982). The likelihood ratio, Wald, and Lagrange multiplier tests: An expository note. 
American Statistician, 36, 153–157.

Eliason, S. R. (1993). Maximum likelihood estimation: Logic and practice. Newbury Park, CA: 
Sage.

Greene, W. H. (2017). Econometric analysis (8th ed.). Boston: Prentice Hall.

Savalei, V. (2014). Understanding robust corrections in structural equation modeling. Structural 
Equation Modeling: A Multidisciplinary Journal, 21, 149–160.
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